
Vol. 14, 2025, 7-16 

* Corresponding author: maksym.grzywinski@pcz.pl 

 

 

DOI: 10.17512/bozpe.2025.14.01 

 

Construction of optimized energy potential 

Budownictwo o zoptymalizowanym potencjale energetycznym 

 
ISSN 2299-8535      e-ISSN 2544-963X 

  

TLBO algorithm for the optimum sensor placement  

in barrel structures 

Maksym Grzywiński1* (orcid id: 0000-0003-4345-3897)  

Büşra Yakak2 (orcid id: 0009-0006-6653-7312)  

Barbaros Atmaca2 (orcid id: 0000-0004-4345-3897)  

Tayfun Dede2 (orcid id: 0000-0001-9672-2232)  
1 Czestochowa University of Technology, Poland  
2 Karadeniz Technical University, Turkey  

Abstract: In civil engineering, structural health monitoring (SHM) involves observing and analyzing  

a system over time using periodic measurements of the engineering structures themselves. 

These measurements are made using sensors. This study aims at reducing the total number of 

sensors needed and to find the optimal sensor placement. The meta-heuristic method named 

the Teaching-Learning Based Optimization (TLBO) algorithm is preferred. To get modal 

properties of the barrel structures, the OAPI properties of the SAP2000 program were used. 

A computer program coded in MATLAB programming was developed to combine the modal 

analysis of the structure and the optimization process for sensors.  
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Introduction 

The steel-braced barrel vault structure is a type of barrel vault structure that is 

strengthened with steel supports and consists of a sequence of continuous arches 

generating a semi-cylindrical shape. These structures can cover large spans without 

the need for internal support columns. Thanks to these features, the steel-braced  

barrel structure is often preferred in large areas such as airports, shopping malls, 
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sports arenas and industrial buildings. Steel-braced barrel vault structures are usually 

designed based on a double or single-layer geometric curved structure. Double-layer 

systems are more capable of covering large spans. The installation of sensors in  

double-layer braced barrel vault (DLBBV) structures for structural health monitor-

ing (SHM) is essential to ensure the safety and service life of these structure.  

By monitoring the dynamic responses of the structure through sensors, possible 

structural deterioration can be detected early. Thus, necessary interventions can be 

made on time and possible loss of life and property can be prevented. 

The number and placement of sensors used in SHM systems are critical to obtain 

accurate vibration data on the structure. Placing the minimum number of sensors in 

the most suitable locations is addressed by the optimal sensor placement (OSP) prob-

lem. The positioning of sensors using OSP methods allows increased accuracy and 

quality of the data received from the sensors, reduce the evaluation time of the data, 

and thus save costs. Using an inadequate number of sensors may result in insufficient 

quality of data and decreases the reliability of the SHM system. Using too many 

sensors is not cost-effective and leads to an increase in the amount of data to be 

processed and a longer data evaluation time (Ostachowicz et al., 2019; Tan &  

Zhang, 2020). 

A review of previous studies reveals that there is a lack of studies on the optimal 

sensor placement for DLBBV structures. However, a limited number of different 

studies have been carried out for OSP problems of other three-dimensional steel 

structures. Cruz et al. (2010) used a genetic algorithm (GA) to position sensors on  

a three-dimensional stadium structure. They compared the results obtained with GA 

with the results obtained by sensor placement methods such as effective independ-

ence and the modal kinetic energy method. They concluded that GA provides a more 

uniform sensor distribution than other methods. Zhang et al. (2014) used the im-

proved particle swarm optimization (IPSO) algorithm for sensor placement on the 

lattice shell structure. They concluded that the IPSO algorithm has a better conver-

gence rate than the PSO algorithm. Beygzadeh et al. (2014) used the improved  

genetic algorithm (IGA) for sensor placement in space structure damage detection. 

They showed that IGA converges better than GA and provides better sensor layouts. 

Kaveh et al. (2022) proposed a Q-learning-based water strider algorithm (QWSA) 

for optimal sensor placement on two different scale dome structures with a large 

number of candidate locations. They concluded that the proposed algorithm is supe-

rior to the binary particle swarm optimization (BPSO), binary Harris hawks optimi-

zation (BHHO) and binary gray wolf optimizer (BGWO) and has a better conver-

gence rate. Yin et al. (2019) optimized sensor placement on a truss structure and  

a rigid-framed arch bridge using a relaxation sequential placement algorithm (SPA). 

They used the modal assurance criterion (MAC) as the objective function. According 

to the results, they showed that the proposed method requires fewer sensors and 

reaches the largest off-diagonal value of the MAC matrix faster than other SPAs,  

but the computation time increases as the number of sensors increases. 

Many optimization algorithms have been considered in OSP problems. However, 

the teaching-learning based optimization algorithm has been used in a limited num-

ber of studies. Mghazli et al. (2023) presented a novel modal assurance criterion 
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(MAC) based methodology to achieve optimal sensor placement of a 410 m high rise 

structure with a hybrid metaheuristic algorithm combining teaching-learning based 

optimization (TLBO), artificial bee colonies (ABC), and stochastic paint optimizer 

(SPO). They concluded that this methodology provides better fitting without the 

need for user-defined parameters, avoids local optimum because of higher accuracy, 

and provides effective results in cost-effective optimization as it requires fewer  

iterations compared to the other six evolutionary algorithms. 

In this study, the aim is to determine the optimum number and location of sensors 

for a DLBBV structure. For these purposes, a computer program coded in MATLAB 

(2022) programming language to combine TLBO algorithm and SAP2000 (2016) 

Open Application Programming Interface (OAPI) features effectively was developed 

and the optimum sensor placement for structural health monitoring of the DLBBV 

structure was realized. A similar arrangement (OAPI and SAP200) was used by 

Atmaca et al. (2020). 

1. TLBO algorithm 

The teaching-learning based optimization (TLBO) algorithm was developed by 

Rao et al. (2011; 2012). TLBO is a population-based heuristic stochastic optimiza-

tion algorithm inspired by the teaching-learning process in a classroom. Population 

size and number of iterations are the control parameters of the TLBO algorithm.  

The TLBO algorithm basically consists of teacher and learner phases. In the teacher 

phase, each individual (learner) uses the best available solution (the teacher) to im-

prove its solution. The best individual in the population is considered as the teacher. 

Other individuals improve themselves by receiving information from the teacher.  

In any iteration i, assuming �� is the mean and �� is the teacher, �� will try to move 

the mean �� towards its own level. Now the new mean will be ��, designated as ����. The existing solution is updated with the following expression 

 ����,� = �
��,� + ������� − ����� (1) 

where �
��,� is the existing solution and ����,� is the updated solution. The teaching 

factor �� determines the mean value to be changed. In the range [0,1], �� is a random 

value. �� = round [1 + rand (0,1) {2 –1}] randomly decided with equal probability 

and the value of �� can be 1 or 2. 

In the learner phase, individuals try to improve the solution quality by interacting 

with each other. A learner learns something new from another learner who has more 

knowledge than the previous learner. The expression for learner modification is as 

follows: 

 ����,� = ��
��,� + ����� − ���   if  ����� < �����
�
��,� + ����� − ���   otherwise             (2) 
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Here, the new positions of learner �� are ����,�. �� is a learner selected at random 

from the class. The fitness values of learners �� and �� are ����� and ����� respec-

tively. A random vector in the range [0, 1] is called ��. 

2. Optimum sensor placement problem 

The optimal sensor placement (OSP) as an optimization problem aims at identi-

fying a limited number of locations that allows the record of as much information  

as possible in terms of modal and vibration characteristics of a given structure.  

The modal assurance criterion (MAC) has been widely used as the basis of objective 

functions as it describes the sensor distribution quality based on their mode shapes 

collinearity 

�#$���v� = &'�(�)�'��)�*+
&'�(�)� '��)�* ∙ &'�(�)�'��)�*      -, . = 1, 2, 3,   , 2 (1) 

where ' = �'3, '+, … , '5� is the mode shape matrix calculated based on the finite 

element model; '� and '� is the -67 and .67 mode shape vector, '�( is the transpose 

vector of '�; '��)� is the -67 mode shape vector, with mode shape values related  

to the sensor location �)�, and 2 is the considered number of vibration modes.  

Correlated mode shapes - and . account for a MAC = 1 while the opposite means  

a MAC = 0. The OSP problem can be formulated in a way to obtain a sensor place-

ment that will realize a minimum MAC value between two different mode shapes -  .. 

Assuming that there are 8 possible sensor locations (degrees of freedom) in  

a structure and s sensors �9 < 8� to be placed in these locations. The number of  

combinations of sensors is given in the following equation 

$ = 8!
9! �8 − 9�! (4) 

where $ denotes the number of all combinations. Since the number of possible  

combinations of structures with few degrees of freedom is small, the solution of the 

OSP problems of such structures can be obtained easily. However, as the degree of 

freedom in the structure increases, the number of combinations increases, and this 

makes it difficult to find the best solution. The aim is to reach the best solution in  

the shortest time by using optimization methods for solving the OSP problem of 

complex structures with many degrees of freedom. In this study, the modal assurance 

criterion, which specifies the correlation between two mode shape vectors, is used 

as the objective function in the optimization process to achieve optimum sensor 

placement in the DLBBV structure. For this purpose, the general equation can be 

written as follows 

 ;
<� = max�@� A�#$��B (5) 
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where ;
<� represents the objective function. In this equation, - and . represent row 

and column values respectively. The value of the off-diagonal elements of the MAC 

matrix varies between 0 and 1. Values close to 1 mean that there is high similarity 

between mode shape vectors, and they are indistinguishable from each other, while 

values close to 0 mean that there is little similarity between mode shape vectors,  

and they are distinguishable from each other. 

3. Numerical example 

In this study, a 384-bar DLBBV structure was used to test the computer program. 

The weight optimization of this example was previously performed by Kaveh & 

Ghazaan (2018) and Dede et al. (2020). The three-dimensional view of the selected 

DLBBV structure is given in Figure 1a. There are two rectangular nets in this barrel 

vault structure. Between the top and bottom nets, there is a 5.12 m vertical distance. 

The bottom nets are symmetrically positioned between the two top barrel nets.  

The 384 bars of this structure were categorized into 31 groups.  
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Fig. 1. 384-bar DLBBV: a) 3D view, b) sub-structure grouping details (own research) 
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This grouping can be seen in detail in Figure 1b. The material properties of the 

elements are; Young’s modulus 30,450 ksi (210,000 MPa), and material density 

0.288 lb/in3 (7971.810 kg/m3). Table 1 shows the cross-sectional areas of the pipe 

steel sections used in each group for this example, taken from the AISC-LRFD code. 

In this DLBBV structure, there are 93 nodes (excluding the supports) where the  

sensors can be placed. Since a single axis sensor will be used, if the degrees of free-

dom in the x, y, and z directions are considered, there are a total of 279 degrees of 

freedom in which the sensors can be placed. 

Table 1. Cross-sectional areas of the pipe steel sections used in the 384-bar DLBBV structure 

(own research) 

Element 

group 

Steel pipe 

area 

Element 

group 

Steel pipe 

area 

Element 

group 

Steel pipe 

area 

Element 

group 

Steel pipe 

area 

1 1.4800 9 15.6000 17 3.6800 25 1.7000 

2 0.6690 10 12.8000 18 0.6690 26 0.6690 

3 2.2300 11 11.3000 19 0.7990 27 1.4800 

4 0.6690 12 11.3000 20 1.0700 28 1.0700 

5 0.8810 13 3.0200 21 0.7990 29 0.7990 

6 0.8810 14 21.3000 22 1.7000 30 0.7900 

7 14.6000 15 2.2500 23 1.0700 31 0.7990 

8 15.6000 16 4.0300 24 1.7000   

 
The finite element model of the 384-bar DLBBV was created using the SAP2000 

program and the modal parameters (number of modes, period, modal displacements, 

modal mass participation) were determined. The modal mass participation rate indi-

cates the percentage participation of the dynamic behavior of a structure and shows 

the participation rate of the total mass of the structure in each mode. To obtain the 

modal parameters of the structure accurately, important modes should be considered. 

It is generally accepted in the literature that the modal effective masses calculated 

for each mode reach 90 % of the total mass of the structure (Wilson, 2002). Within 

the scope of this study, the number of relevant modes to be considered in the OSP 

problem of a 384-bar DLBBV structure was determined by determining the mode in 

which the modal mass participation rate calculated for each mode reaches 90 % of 

the total mass of the structure. Since the modal mass participation ratio of the  

384-bar DLBBV structure in the y and z directions reaches 90 % in the 27th mode, 

the first 27 modes were selected as the relevant modes. After determining the number 

of relevant modes, the number of single-axis sensors to best represent the selected 

relevant mode was determined. The objective function given in Eq. (5), which tries 

to minimize the off-diagonal maximum value of the MAC matrix, was optimized  

for different sensor numbers. An off-diagonal maximum value of the MAC matrix 

between 0.20 and 0.25 ensures the independence between the mode shape vectors 

and means that the number of sensors to represent the relevant mode well is reached 
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(Carne & Dohrmann, 1995). While determining the number of sensors, the optimi-

zation parameters of population size and iteration number were set as 50 and 150, 

respectively. While determining these values, the best optimization parameters were 

selected by using different population size. The total number of runs was also con-

sidered as 10. At the end of the optimization process, the number of sensors that first 

reached the acceptable max-MAC value between 0.20 and 0.25 was determined as 

the optimum number of sensors. The change in the max-MAC values for different 

sensor numbers is shown in Figure 2. As can be seen from the graph, 23 sensors were 

the first to reach the acceptable range. It was observed that the max-MAC value 

reached 0.2494 using a total of 23 sensors.  
 

 
Fig. 2. Determination of the number of sensors (own research) 

   
Fig. 3. Convergence graph of max-MAC: a) all Runs, b) Run-5 and Run-6 (own research) 

The convergence graph was then obtained by using the max-MAC method as the 

objective function in the optimization process in order to determine the optimal  

locations of the sensors and is given in Figure 3a. When this graph is analyzed, it is 

seen that among the 10 runs, Run-5 is the fastest converging run, reaching the best 

result at the 142nd iteration. The best run (Run-5), the worst run (Run-6) and the  

average of all runs are given in Figure 3b.  
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The optimum sensor locations obtained are shown in Figure 4. The three-dimen-
sional plot of the max-MAC matrix is given in Figure 5.  The max-MAC values  
obtained in each run, the number of iterations and the number of function evaluations 
(NFE) are given in Table 2. The optimum sensor locations obtained from Run-5  
are given in Table 3. 
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Fig. 4. Optimum sensor locations (own research) 
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Table 2. max-MAC values obtained as a result of the analysis (own research) 

Run max-MAC Iteration NFE Run max-MAC Iteration NFE 

1 0.2881 1 100 6 0.3244 115 5800 

2 0.2608 63 3200 7 0.2809 91 4600 

3 0.2992 102 5150 8 0.2743 131 6600 

4 0.2736 77 3900 9 0.3221 42 2150 

5* 0.2494 142 7150 10 0.2589 81 4100 

* Best run 

Table 3. Optimum sensor locations obtained (own research) 

Number of 

relevant modes 

Number of 

sensors 

Objective 

function 
Best run Optimum sensor locations 

27 23 max-MAC Run-5 

x 23, 25, 30, 35, 52, 62, 86, 88, 92 

y 52, 59, 71, 72, 78 

z 24, 28, 34, 38, 40, 53, 55, 66, 92 

Conclusions 

The aim of this study was to determine the optimum number and location of  

sensors for a DLBBV structure. For these purposes, a computer program coded in 

MATLAB programming language in order to combine the TLBO algorithm and the 

SAP2000 with Open Application Programming Interface (OAPI) features effectively 

was developed and the optimum sensor placement for structural health monitoring 

of the DLBBV structure was realized. 

Since the modal mass participation ratio of the DLBBV structure reaches 90 %  

in the 27th mode, the first 27 modes were selected as the relevant modes. The fact 

that the maximum off-diagonal value of the MAC matrix is between 0.20 and 0.25 

ensures independence between the mode shape vectors and means that the number 

of sensors that will best represent the relevant mode has been reached. When the 

number of sensors that best represent the relevant mode is determined by the optimi-

zation of the max-MAC method, the optimum number of sensors is obtained as 23.  

When the results obtained from the 10 runs performed for the DLBBV structure are 

examined, it is seen that Run-5 is the fastest converging study and the best result is 

reached in the 142nd iteration. 

While 2.70·1033 combinations were required to find the best placement of 23 sensors 

in the 384-bar DLBBV structure, the NFE is 7150 in the developed program. 
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